Bubble-Induced Cave Collapse
نویسندگان
چکیده
Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.
منابع مشابه
Correction: Bubble-Induced Cave Collapse
access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملShock-Induced Bubble Collapse versus Rayleigh Collapse
This paper compares two physical mechanisms for the collapse of a bubble near a rigid wall: a traveling shock-induced collapse and a Rayleigh-like collapse due to a uniform rise of the pressure around the bubble. A multi-material compressible flow solver capable of handling material interfaces under high pressures is used to investigate these two scenarios for different levels of the driving pr...
متن کاملNumerical simulations of non-spherical bubble collapse.
A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pres...
متن کاملDynamics of laser-induced cavitation bubbles
Single cavitation bubble luminescence induced by laser in contrast to single bubble sonoluminescence has no need in a sound field for a strong collapse and for light emission. The cavitation bubbles are produced by focused laser light and make the single strong collapse. As shown experimentally, the number of emitted photons from cavitation luminescence is much greater than it was observed in s...
متن کاملShock-induced collapse of a bubble inside a deformable vessel.
Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized pr...
متن کامل